کلیدزنی شیفت فاز تربیعی (Quadrature Phase Shift Keying)
RBF
تابع پایه شعاعی (Radial Basis Function)
SASS
اندازه گام خود تطبیقی (Self Adaptive Step Size)
SBS
جستجوی برگشتی متوالی (Sequential Backward Search)
SFS
روش جستجوی مستقیم متوالی (Sequential Forward Search)
SRM
اصل حداقل سازی ریسک ساختاری (Structural Risk Minimization)
SNR
نسبت سیگنال به نویز(Signal to Noise Ratio)
SVM
ماشین بردار پشتیبان (Support Vectors Machine)
TDM
تقسیم زمانی (Time Division Multiplexing)
پیشگفتار
پیشگفتار
امروزه شبیه سازی سیستمهای مخابراتی با توجه به پیچیدگی روز به روز تجهیزات، از اهمیت بالایی برخوردار است. مطالعه و بررسی عملکرد یک سیستم با روش های تحلیلی، سخت و گاهی غیر ممکن بوده و بررسی عملکردهای سیستم مخابراتی مدرن، بدون استفاده از شبیه سازی، ساخت نمونه آزمایشی را اجتناب ناپذیر می کند. اما علیرغم هزینه های بالای ساخت یک نمونه آزمایشی، هزینه های آزمایش در شرایط مختلف چندین برابر هزینه شبیهسازی کامپیوتری خواهد بود. علاوه بر آن شبیه سازی کامپیوتری شرایطی را مورد بررسی قرار میدهد که تولید همه آن شرایط شبیهسازی عملا با یک نمونه ساخته شده، امکان پذیر نیست و ممکن است فراهم نبودن بسترهای زیرساختی، موجب ایجاد شکافی بزرگ میان مباحث تئوری و پیاده سازی عملی شود. دلایل ذکر شده و نیز سهل الوصول بودن استفاده از کامپیوتر، به طور منطقی بر محبوبیت شبیهسازی میافزاید.
یک بخش بسیار مهم در تمامی سیستمهای مخابراتی، بخش بازیابی اطلاعات در گیرنده است. اهمیت این بخش زمانی روشن میگردد که بنا به هر دلیلی، گیرنده از محتوی نوع سیگنال ارسالی در فرستنده و نیز شرایط کانال اطلاع نداشته باشد. تاکنون روشهای مختلفی برای تشخیص خودکار نوع مدولاسیون دیجیتال پیشنهاد شده است که هر کدام، در شرایط گوناگون سعی در ارائه روشی خودکار برای شناسایی نوع مدولاسیون داشته اند. روشهای ارائه شده در دو روش کلی خلاصه میشوند: روشهای مبتنی بر نظریه تصمیم (با معیارهای آماری) و روشهای مبتنی بر تشخیص الگو.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
با توجه به سادگی و تعمیمپذیری روشهای مبتنی بر تشخیص الگو در این پایان نامه به دنبال ارائه روشی هستیم تا با آن بتوان ویژگیهای کارایی را از سیگنال استخراج و انتخاب نموده و سپس با بهره گرفتن از مفاهیم تشخیص الگو، نوع مدولاسیون را تشخیص دهیم. در بیشتر سیستمهای پیشنهاد شده قبلی، همواره ویژگیهایی از سیگنال دریافتی در گیرنده استخراج میگردد. این ویژگیها در مرحله بعدی به واحد دیگری به نام واحد طبقه بندیکننده تحویل داده می شود. طبقه بندیکننده ابتدا درصدی از این ویژگیها را برای تمامی کلاسها انتخاب نموده و براساس آنها، فرآیندی موسوم به فرایند آموزش داده ها را، پیادهسازی می کند. در حالت آموزش، شناساگر عموما، فضای بردار ویژگی را با شاخص هایی بین کلاسها تقسیم مینماید. سپس در حالت آزمایش، طبقه بندی کننده، براساس درصد باقی مانده از سیگنالها، ویژگیها را با این شاخص های عملکردی میسنجد. کارایی سیستم در این حالت، تابعی براساس درصد تشخیص صحیح سیستم است. هر چقدر ویژگیها از نظر مفاهیم آماری (میانگین، واریانس و غیره) در دو حالت آموزش و تست برای هر کلاس، پایدارتر بوده و نیز نسبت به دیگر کلاسها همبستگی کمتری داشته باشند؛ قدرت تشخیص شناساگر، بیشتر خواهد بود. متناظرا هر سیستمی که به داده های کمتری برای آموزش و آزمایش نیاز داشته باشد قابلیت بیشتری دارد و اصطلاحا نسبت به داده های ندیده مقاومتر است.
در روشهای شناسایی قبلی که مبتنی بر تشخیص الگو هستند ویژگیهایی از سیگنال استخراج شده و بعد از آن این ویژگیها با شناساگری که درصد تشخیص بهتری را ارائه میداد، مورد ارزیابی قرار میگرفت. تقریبا در تمامی کارهای گذشته برای کاهش ابعاد ویژگی و نیز کاهش پیچیدگی سیستم، روشهایی برای انتخاب ویژگی پیشنهاد میگردید. در این روشها عموما از الگوریتمهای تکاملی برای جستجوی سراسری فضای ویژگی استفاده میشده و زیر مجموعه ای از بردار ویژگی که منجر به درصد تشخیص بالاتر میشد به عنوان زیرمجموعه کارا انتخاب میشد. در پارهای از روشها نیز از این الگوریتمها برای بهینهسازی تنظیمات مربوط به طبقه بندی کنندهها استفاده میشد.
از میان طبقه بندی کننده های مورد استفاده در روشهای تشخیص الگو میتوان به شبکه های عصبی مصنوعی، طبقه بندی کننده های فازی، مدار طبقه بندی کننده آستانهای و ماشین بردار پشتیبان اشاره نمود. در بین این شناساگرها، طبقه بند ماشین بردار پشتیبان، به دلیل استفاده از مفاهیم ساختارمحور در کمینهسازی خطا، همواره با استقبال بیشتری از سوی محققان رو به رو بوده است. در این پایان نامه نیز این شناساگر، جهت تفکیک سیگنالهای مدولاسیون دیجیتال استفاده شده است.
فصل اول
مقدمهای بر سیستم شناسایی خودکار نوع مدولاسیون
مقدمه